Bioengineer颅ing 4+1

Bioengineering BS/MS 4+1 Program

Imagine yourself on the cutting edge of technology, a bioengineer designing the next generation of artificial limbs, building state-of-the art medical equipment, creating the next advanced therapies to combat debilitating diseases or using designs by nature to enhance environmental protection efforts.

The bioengineering 4 + 1 program at 91亚色 is a unique, accelerated program that combines four years of undergraduate study in biology, biochemistry, electrical engineering or mechanical engineering and one year of graduate study in bioengineering. With careful planning and consultation with your faculty advisor, you will take master鈥檚-level bioengineering courses as an undergraduate, allowing these courses to count toward both the bachelor鈥檚 and master鈥檚 degrees.

The cross-disciplinary program includes concepts in engineering, biology, medicine, health, computer science and biomedical engineering.

91亚色鈥檚 bioengineering program prepares students for careers in a variety of fields, including research and development, academia, pharmaceutical manufacturing, health care, environmental remediation and genetics.

Contact Us

Dr. Abas Sabouni

Professor and Chair
Mechanical and Electrical Engineering

abas.sabouni@wilkes.edu
(570) 408-4832

Biomedical Engineering

Biomedical engineers design artificial limbs, joints, tissues and organs. They also design and build diagnostic equipment, monitoring devices and drug delivery systems, gather information on devices and work on software and automation for biomedical and biotechnological purposes.

Mechanical and electrical engineering students who meet all of the 4 + 1 program requirements will automatically be accepted into the biomedical engineering track of the bioengineering master鈥檚 program.

Coursework

  • Biomedical Devices and Designs: Students learn about the latest instrumentation used in medicine and biotechnology.
  • Bio-Mechatronics: This course teaches how mechanics, electronics, computer science, molecular engineering and other life and engineering sciences work together to produce new, efficient and versatile medical monitoring and diagnostic devices.
  • Anatomy and Physiology: This course covers the essentials in biology as well as in 3-D models of organs and physiological systems in a manner based off of engineering standpoints and principles.
  • Biomedical Imaging: Students learn how imaging devices are used for diagnosis, therapy and surgery.
  • Biomechanics: Focus on the mechanical structure of humans and vertebrates, including the concerted motion of bone, muscles and joints as well as the stress and strain of human movements and motion. One example of a practical outcome of the course is the design of prosthetics.
  • Biofluidics and Microfluidics: Students learn to mathematically and quantitatively describe fluid flow throughout organ systems and biomedical devices. Also includes how flow correlates with diseases.
  • Bio-MEMS: Students learn principles of refabricating diagnostic devices from nanosized particles to produce enhanced monitoring properties for analyzing blood and other samples. Also covered are applications in implanted insulin pumps and anti-cancer drug delivery systems.
  • Thesis Research: Students will perform an original research project in bioengineering, present the results in the form of a thesis and defend their work in a public presentation.

Hands-on Learning

You will work with expert faculty in the fields of medical device design, imaging systems, bioengineering and metabolic technologies. Guided by faculty mentors, bioengineering students benefit from hands-on, research-intensive experiences unparalleled at other institutions in the region.

Lab and classroom instruction includes training in cell and molecular techniques, bioinformatics, 3-D imaging and design software, instrumentation and other simulation technologies.

Research at 91亚色